Total Synthesis of the Second Messenger Analogue D-myo-Inositol 1-Phosphorothioate 4,5-Bisphosphate: Optical Resolution of DL-1-O-Allyl-2,3,6-tri-O-Benzyl-myo-inositol and Fluorescent Labelling of myo-Inositol 1,4,5-Trisphosphate

Dethard Lampe, Stephen J. Mills and Barry V. L. Potter*
School of Pharmacy and Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, Avon, UK

Two routes for the synthesis of the myo-inositol 1,4,5-triphosphate analogue myo-inositol 1-phosphorothioate 4,5-bisphosphate have been devised. DL-2,3,6-Tri-O-benzyl-1-O-(cis-prop-1-enyl)-myo-inositol was prepared from DL-1-O-allyl-2,3,6-tri-O-benzyl-myo-inositol and phosphorylated to the protected 4,5-biphosphate. Removal of the propenyl group generated DL-1,2,4-tri-O-benzyl-5,6-bis[bis(2-cyanoethoxy) phospho]-myo-inositol which was thiophosphorylated to give DL-2,3,6-tri-O-benzyl-1-O-[bis(2-cyanoethoxy)thiophospho]-4,5-bis[bis(2-cyanoethoxy) phospho]-myoinositol. Deblocking afforded racemic myo-inositol 1-phosphorothioate 4,5-bisphosphate, which was reacted with the iodoketone of a fluorescent label to generate a fluorescently labelled inositol 1,4,5trisphosphate analogue. DL-1-O-Allyl-2,3,6-tri-O-benzyl-myo-inositol was resolved into its enantiomers by means of the crystalline 4,5-biscamphanate ester. 1d-(+)-1-O-Allyl-2,3,6-tri-O-benzyl-myoinositol was used to prepare D -myo-inositol 1-phosphorothioate 4,5-bisphosphate in a fashion analogous to the racemic modification via 1d-(+)-2,3,6-tri-O-benzyl-1-O-(cis-prop-1-enyl)-4,5-bis[bis(2-cyanoethoxy)phospho]-myo-inositol.

In a second route, DL-1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol was converted into the corresponding 4,5-dibutyrate. Removal of the isopropylidene group gave DL-1,4,-di-O-benzyl-5,6-di-O-butyryl-myo-inositol which was converted into the corresponding 1-O-p-methoxybenzyl ether via the 1,2-O-dibutylstannylidene derivative. Benzylation of the 2-position and removal of the butyrates yielded DL-1-O-p-methoxybenzyl-2,3,6-tri-O-benzyl-myo-inositol which was phosphorylated to DL-1O - p-methoxybenzyl-2,3,6-tri-O-benzyl-4,5-bis[bis(2-cyanoethoxy)phospho)]-myo-inositol.
Removal of the p-methoxybenzyl group gave the key intermediate DL-1,2,4-tri-O-benzyl-5,6-bis[bis(2cyanoethoxy) phospho]-myo-inositol, which could be further elaborated to myo-inositol 1 phosphorothioate 4,5-bisphosphate.

D-myo-Inositol $1,4,5$-triphosphate $\left[\operatorname{Ins}(1,4,5) \mathrm{P}_{3}\right], \mathbf{1}$ is a ubiquitous second messenger, which couples agonist stimulation of a wide variety of cell surface receptors to the mobilisation of intracellular calcium..$^{1.2}$ The gene coding for the $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ receptor has now been cloned ${ }^{3.4}$ and the ability of this transmembrane protein to gate calcium in response to $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ has been demonstrated. ${ }^{5}$ Realisation of the fundamental cellular role played by $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ and the acceptance of the polyphosphoinositide signal transduction mechanism has led to a massive increase in biological ${ }^{1,2}$ and, latterly, chemical ${ }^{6-8}$ effort to unravel the details of this complex pathway. Ins$(1,4,5) \mathrm{P}_{3}$ has now been synthesised by many groups and

chemical emphasis in this field must now focus upon the synthesis of novel structurally modified inositol phosphate analogues, as potential enzyme inhibitors and receptor antagonists to facilitate pharmacological intervention in this signalling pathway.

Few biologically potent $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ analogues have yet been
synthesised ${ }^{6-8}$ although recent reports on analogues modified at the 2 -position, ${ }^{9.10}$ the 3 -position, ${ }^{11}$ the 6 -position ${ }^{12}$ and on the synthesis of an active 5 -methylene phosphonate analogue ${ }^{13}$ have appeared. We have reasoned that, by virtue of their metabolic stability, phosphorothioate analogues will prove to be of significant importance in this field. ${ }^{14,15}$ We previously reported the first synthesis of the trisphosphorothioate 2 [Ins($1,4,5$) $\left.\mathrm{PS}_{3}\right],{ }^{16}$ a potent inhibitor of human erythrocyte Ins $(1,4,5) \mathrm{P}_{3} 5$-phosphatase, ${ }^{17}$ and the specifically modified 5 phosphorothioate analogue 3 [$\left.\operatorname{Ins}(1,4,5) \mathrm{P}_{3}-5 \mathrm{~S}\right] .{ }^{18}$ Both of these highly potent analogues are already finding numerous biological applications. ${ }^{7.14 .15 .19 .20}$ Phosphorothioate analogues have also been synthesised by another group. ${ }^{21}$

The few structure-activity studies which have been performed show that the vicinal 4,5 -bisphosphate moiety of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ is essential for Ca^{2+}-releasing activity, ${ }^{14}$ the 1 -phosphate group being thought to provide enhanced affinity for the receptor. Semisynthetic $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ analogues with modifications at the 1 -phosphate position have been prepared from the deacylated polyphosphoinositide phospholipid and are biologically potent. ${ }^{22}$ Other groups have recently addressed the problem of attaching reporter groups to $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}{ }^{23.24}$ or related compounds, ${ }^{25}$ and $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ to affinity matrices. ${ }^{10,25,26} \mathrm{We}$ propose here that introduction of the nucleophilic sulfur of a 1 phosphorothioate group into the $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ molecule should permit the facile attachment of reporter groups to $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$, such as photoaffinity labels, spin labels and fluorescent probes. Fluorescent labelling methodology has already shown its versatility in the nucleic acid field, ${ }^{27}$ where it is already

Scheme 1 Reagents and conditions: i, Butyric anhydride, pyridine, dimethylaminopyridine (DMAP); ii, $2 \mathrm{~mol} \mathrm{dm}^{-3}-\mathrm{HCl}_{\mathrm{Cl}}-\mathrm{H}_{2} \mathrm{O}-\mathrm{methanol}$ ($1: 2: 5$); iii, (a) $\mathrm{Bu}_{2} \mathrm{SnO}$-toluene-reflux, then (b) dry DMF-KI, p-methoxybenzyl chloride-CsF; iv, DMF- $\mathrm{NaH}-\mathrm{BnBr}$; v, $\mathrm{NaOH}-\mathrm{MeOH}$; vi, (-)-camphanic acid chloride, pyridine; vii, $\mathrm{NaOH}-\mathrm{MeOH}$; viii, tris(triphenylphosphine)rhodium(1) chloride $\mathrm{DABCO}, \mathrm{EtOH}-$ toluene-water $\mathrm{v} / \mathrm{v} / \mathrm{v} 7: 3: 1 ; \mathrm{ix}, \mathrm{Bu}{ }^{t} \mathrm{O}_{2} \mathrm{~K}$, dimethyl sulfoxide; x, bis(2-cyanoethoxy)- N, N-diisopropylaminophosphine, tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{Bu}^{t} \mathrm{O}_{2} \mathrm{H}$; xi, $\mathrm{DDQ}, \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(15: 1$); xii, $\mathrm{HgO}-\mathrm{HgCl}$ in $10: 1 \mathrm{v} / \mathrm{v}$ acetone: water, xiii, $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}-\mathrm{MeOH} v / \mathrm{v} 1: 5$; xiv, bis(2-cyanoethoxy)- N, N-diisopropylaminophosphine, tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then S_{8}-pyridine; xv, Na-liq. NH_{3}
established as a valuable alternative to the use of radioactivity. Consequently, we have devised syntheses of the novel Ins$(1,4,5) \mathrm{P}_{3}$ analogue myo-inositol 1-phosphorothioate 4,5-bisphosphate $4\left[\operatorname{Ins}(1,4,5) P_{3}-1 \mathrm{~S}\right]$ in racemic and optically active form by two different routes and demonstrate its use in the fluorescent labelling of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ (Scheme 1). A preliminary account of this work has already appeared. ${ }^{28}$

Results and Discussion

Isomerisation of the $1-O$-allyl group of dL-1-O-allyl-2,3,6-tri-O-benzyl-myo-inositol ${ }^{29}$ DL-5ab* to the corresponding prop-1enyl derivative DL-7 (mixture of ca. 5:1 cis: trans prop-1-enyl isomers) was accomplished using tris(triphenylphosphine)rhodium(I) chloride catalyst in the presence of diazabicyclo[2.2.2] octane (DABCO) in 7:3:1 ethanol-benzene-water. ${ }^{30}$ Phosphitylation of the 4,5 -vicinal diol was effected using bis-(2-cyanoethyl)- N, N-diisopropylaminophosphine, ${ }^{31}$ followed by oxidation of the protected inositol $P^{\text {III }}$ bisphosphite to the P^{V}

[^0]bisphosphate with $\mathrm{Bu}^{t} \mathrm{O}_{2} \mathrm{H}^{16}$ to give the bisphosphate dl-9. Removal of the prop-1-enyl protecting group using $\mathrm{HgO}-$ $\mathrm{HgCl}_{2}{ }^{32}$ gave DL-11ab, which was phosphitylated in the same fashion and the product oxidized to the fully protected inositol 1 -monophosphorothioate 4,5-bisphosphate DL-12ab using sulfur in pyridine. Deblocking of all protecting groups was accomplished using sodium in liquid ammonia ${ }^{16}$ to give the $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ analogue DL-4ab, which was purified by ionexchange chromatography on DEAE Sephadex A-25. DL-4ab was eluted at $c a .800 \mathrm{mmol} \mathrm{dm}^{-3}$ triethylammonium hydrogen carbonate (TEAB) buffer. ${ }^{31} \mathrm{P}$ NMR spectroscopy showed clearly that the product possessed a single phosphorothioate group ($\delta_{\mathrm{p}}, 42.1$) and two phosphate groups ($\delta_{\mathrm{p}}, 4.8,5.0$).

The protected key intermediate 11 was also prepared in optically active form by resolution of $1-O$-allyl- $2,3,6$-tri- O -benzyl-myo-inositol DL-5ab via its 4,5-bis(-)- ω-camphanate derivative DL-6ab. The biscamphanate of the protected D-isomer readily crystallised initially from a diastereoisomeric mixture, however the biscamphanates of both the D-5a and L-5b protected inositols, $6 \mathbf{a}$ and $\mathbf{6 b}$ respectively, could be crystallised under appropriate conditions. The ${ }^{1} \mathrm{H}$ NMR resonances of the camphanate methyl groups were used as an initial guide to the efficiency of this resolution. After base-deblocking of the camphanate moieties both enantiomers of 1-O-allyl-2,3,6-tri- O -

Scheme 2 Reagents and conditions: i, IANBD (1.1 equiv.), EtOH
benzyl-myo-inositol were obtained. The absolute configuration of these enantiomers was assigned by comparison of our physical data with those for one of them in the literature ${ }^{29}$ and by conversion of one of them ($\mathbf{L - 5 b}$) to the known triol $\mathrm{D}-(-)-1,2,4-$ tri-O-benzyl-myo-inositol ${ }^{29}$ by isomerisation of the allyl group and subsequent removal of the cis-prop-1-enyl group with acid. D-1-O-Allyl-2,3,6-tri- O-benzyl-myo-inositol 5 a was isomerised to the cis-1-prop-1-enyl derivative $8 \mathbf{8}$ using KOBu'-DMSO ${ }^{\mathbf{3 3}}$ and the product was phosphorylated to give the corresponding optically active protected 4,5-bisphosphate D-10a. Removal of the propenyl group with acid and thiophosphorylation of the resulting alcohol D-11a generated D-2,3,6-tri- O-benzyl-1-O-[bis(2-cyanoethoxy)thiophospho]-4,5-bis[bis(2-cyanoethoxy)-phospho]-myo-inositol which was deblocked to give D-myoinositol 1-phosphorothioate 4,5-bisphosphate 4a.

The key intermediate DL-11 was also prepared via a different route commencing with the known DL-1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol ${ }^{29}$ DL-13. This was converted to the 4,5 -di- O-butyrate DL-14 and the isopropylidene group was removed with acid. Selective tin-mediated alkylation ${ }^{34}$ of the equatorial 1-hydroxy of the resulting diol DL- 15 group by p methoxybenzyl chloride was achieved via the corresponding 1,2-dibutylstannylene derivative to give DL-1-O-p-methoxy-benzyl-3,6-di- O-benzyl-myo-inositol DL-16. Benzylation of the free 2-hydroxy group afforded fully protected DL-17 and removal of the butyrates gave the key intermediate DL-1-O-p-methoxybenzyl-2,3,6-tri-O-benzyl-myo-inositol DL-18. which was phosphorylated to the protected 4,5-bisphosphate DL-19. The p-methoxybenzyl group was removed using 2,3-chloro-5,6-dicyano-1,4-benzoquinone (DDQ) ${ }^{35}$ to give DL-11, which was converted into final product DL-4ab as above. Compound 4ab was a potent mobiliser of intracellular Ca^{2+} from permeabilised cells. ${ }^{36}$

Nitrobenzoxadioazole (NBD) derivatives, such as the iodoacetate $4-\{N$-[2-(iodoacetoxy)ethyl]- N-methylamino $\}$ - 7 -nitro-2,1,3-benzoxadiazole (IANBD), are unique in having longwavelength fluorescein-like fluorescence spectral properties, but with high environmental sensitivity of the quantum yield coupled with a relatively small molecular size. ${ }^{37}$ Such a probe seems ideal for preliminary studies of the interactions of a fluorescently tagged $\operatorname{Ins}(1,4,5) P_{3}$ with the intracellular receptor and the metabolic enzymes 5-phosphatase and 3-kinase. Reaction of the phosphorothioate analogue DL-4ab with IANBD proceeded smoothly to give the adduct 20 , which was purified by ion-exchange chromatography, and was eluted at $c a .800$
mmol dm ${ }^{-3}$ TEAB. ${ }^{31} \mathrm{P}$ NMR spectroscopy (Fig. 1) showed clearly that the 1-phosphorothioate group ($\delta_{\mathrm{p}} 42.1$) had been converted into the S-alkyl phosphorothiolate ($\delta_{\mathbf{p}} 19.9 ;{ }^{3} J_{\mathrm{POCH}}=$ ${ }^{3} J_{\mathrm{PSCH}}=9.5 \mathrm{~Hz}$). The adduct 20 exhibited a UV spectrum consistent with the presence of an NBD chromophore and when excited at 460 nm showed the expected fluorescence at 540 nm .

Compound 20 was potent at releasing ATP-sequestered intracellular Ca^{2+} from permeabilised cells and was recognised by the $\operatorname{Ins}(1,4,5) P_{3}$ receptor. Biological results for 4 and 20 will be reported elsewhere. The synthesis of 20 thus provides the first example of a biologically active $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ analogue labelled with a fluorescent reporter group, which should be of considerable utility in probing the interactions of this second messenger with proteins. These studies are now in progress.

Experimental

Materials and Methods.-TLC and HPTLC were performed on pre-coated plates (Merck TLC aluminium sheets silica 60 F_{254}, Art. no. 5554 and Merck HPTLC plates silica $60 \mathrm{~F}_{254}$, Art. no. 5635). Products were visualised by spraying phosphomolybdic acid in methanol followed by heating. Flash chromatography refers to the method of Still et al. ${ }^{38}$ and was carried out using Sorbsil C60 silica gel.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either Bruker AM-300 or JEOL JNM GX-270 NMR spectrometers. Chemical shifts were measured in ppm relative to tetramethylsilane (TMS). ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL FX-90Q spectrometer. ${ }^{31} \mathrm{P}$ NMR chemical shifts were measured in ppm relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4} . J$ Values are given in Hz . Melting points (uncorrected) were determined using a ReichertJung Thermo Galen Kofler block. Microanalysis was carried out at Butterworth Laboratories Ltd. and the University of Bath microanalysis service. Mass spectra were recorded at the SERC Mass Spectrometry Service Centre and at the University of Bath Mass Spectrometry Service. Optical rotations were measured using an Optical Activity Ltd. AA-10 polarimeter, $[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ion-exchange chromatography was performed on an LKB-Pharmacia Medium Pressure Ion-Exchange Chromatograph using DEAE Sephadex or DEAE Sepharose and gradients of triethylammonium hydrogen carbonate (TEAB) as eluent. Compounds containing phosphates were assayed quantitatively by the Briggs phosphate test. ${ }^{39}$ Compounds containing phosphorothioates were assayed by a modification of the Ellman test ${ }^{40}$ for sulfydryl groups as follows. To aliquots ($250 \mathrm{~mm}^{3}$) of the ion-exchange column fractions was added a buffered solution of E!lman's reagent $\left[1 \mathrm{~cm}^{3} ; 100 \mathrm{~cm}^{3}\right.$ of $10 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ Tris buffer, pH 8 , containing 40 mg of $5,5^{\prime}$-dithio-bis(2-nitrobenzoic acid)]. The fractions containing phosphorothioates were identified by their deep yellow colour.
(\pm)-3,6-Di-O-benzyl-4,5-di-O-butyryl-1,2-O-isopropylidine-myo-inositol 14.-A mixture of $3,6-\mathrm{di}-O$-benzyl-1,2- O-isoprop-ylidene-myo-inositol $13^{29}(1.69 \mathrm{~g}, 4.2 \mathrm{mmol})$, pyridine ($30 \mathrm{~cm}^{3}$, 0.37 mol), butyric anhydride ($4 \mathrm{~cm}^{3}, 24.4 \mathrm{mmol}$) and dimethylaminopyridine (DMAP) $(50 \mathrm{mg}, 4.1 \mathrm{mmol})$ was stirred at room temp. The reaction was followed by TLC $\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $1: 1$) and after 2 h showed a single product ($R_{\mathrm{f}}=0.70$). The solution was diluted with methanol $\left(10 \mathrm{~cm}^{3}\right)$, the mixture was stirred for 30 min and the solvents evaporated. A solution of the residue in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was washed with saturated brine, ice-cold $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, a saturated solution of sodium hydrogen carbonate and water (50 cm^{3} each). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The oily residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $\left.1: 1\right)$ to give a syrup which could not be crystallised. Yield $2.03 \mathrm{~g}(88 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right)$

Fig. $1 \quad 36.2 \mathrm{MHz}$ broad band ${ }^{1} \mathrm{H}$-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of 20 in $\mathrm{D}_{2} \mathrm{O}$ [$15 \mathrm{mmol} \mathrm{dm}^{-3}$ solution of 20 in $50 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{TEAB}, 5 \mathrm{mmol}$ dm^{-3} ethylenediaminetetraacetic acid (EDTA), pH 7.7]. ${ }^{31} \mathrm{P}$ NMR parameters were: sweep width, 10 kHz ; pulse width, 9μ; collected over 8 K ; no. of transients, 2500 ; referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$. The insert shows part of the ${ }^{1} \mathrm{H}$-coupled spectrum for the resonance at 19.9 ppm
$0.92\left(6 \mathrm{H}, \mathrm{q}, J 7.4, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34,1.53\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}\right)$, $1.60\left(4 \mathrm{H}, \mathrm{tq}, J 7.4, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.23(4 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.74-3.80(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 6-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{t}, J$ $6.0,3-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 6.0,3.7,2-\mathrm{H}), 4.66,4.77\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ $\left.12.0, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.69\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03(1 \mathrm{H}, \mathrm{t}, J 8.3,5-$ $\mathrm{H}), 5.44(1 \mathrm{H}, \mathrm{t}, J 8.7,4-\mathrm{H})$ and $7.24-7.34\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; $m / z(\mathrm{CI}) 558\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 541\left[(\mathrm{M}+\mathrm{H})^{+}, 65\right], 453$ (20), 433 (27), 108 (41) and 91 (51) (Found: $\mathrm{M}^{+}, 541.2801$. $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{8}$ requires $\left.(\mathrm{M}+\mathrm{H})^{+}, 541.2801\right)$.
(土)-1,4-Di-O-benzyl-5,6-di-O-butyryl-myo-inositol 15.Compound 14 ($2.03 \mathrm{~g}, 3.7 \mathrm{mmol}$) was heated under reflux for 1 h in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid $\left(5 \mathrm{~cm}^{3}\right)$, water $\left(10 \mathrm{~cm}^{3}\right)$ and methanol ($25 \mathrm{~cm}^{3}$). The solution was cooled, sodium hydrogen carbonate (2 g) was added, the solvents were evaporated and the product extracted with dichloromethane $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The organic layer was washed with brine, saturated sodium hydrogen carbonate, brine and water ($50 \mathrm{~cm}^{3}$ each). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give an oil. A minimum quantity of ethyl acetate was added to dissolve the oil and light petroleum was added. After scratching, crystals appeared which were filtered to give $15(1.8 \mathrm{~g}, 97 \%) ; R_{\mathrm{f}}=0.48$ $\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $1: 1$); m.p. $78-79{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.2 ; \mathrm{H}$, 7.5. Calc. for $\left.\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8}: \mathrm{C}, 67.18 ; \mathrm{H}, 7.25 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300\right.$ $\mathrm{MHz}) 0.90\left(6 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.57(4 \mathrm{H}, \mathrm{tq}, J 7.4$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.17-2.23 (4 H, m, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.61$2.62\left(2 \mathrm{H}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ ex, 2 OH$), 3.47(1 \mathrm{H}$, dd, $J 9.8,2.7,3-\mathrm{H}), 3.57$
($1 \mathrm{H}, \mathrm{dd}, J 9.5,2.8,1-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{t}, J 9.6,4-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{t}, J$ $2.7,2-\mathrm{H}), 4.55,4.63\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.0, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.70,4.72$ (2 $\left.\mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.5, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.07(1 \mathrm{H}, \mathrm{t}, J 9.8,5-\mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{t}$, $J 9.9,6-\mathrm{H})$ and $7.24-7.37\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; m / z$ (CI) 518 $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 501\left[(\mathrm{M}+\mathrm{H})^{+}, 6\right], 428$ (7), 303 (8), $108(20), 91$ (7) and 44 (7) [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 518.2754$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~N}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$518.2754].
(\pm)-1-O-p-Methoxybenzyl-3,6-di-O-benzyl-4,5-di-O-butyryl-myo-inositol 16 .-Compound $15(1.8 \mathrm{~g}, 3.6 \mathrm{mmol})$ and dibutyltin oxide ($1.076 \mathrm{~g}, 4.2 \mathrm{mmol}$) were heated at reflux in toluene using a Dean-and-Stark apparatus for 3 h . The reaction mixture was cooled and the toluene was evaporated to give a syrup which was dried under vacuum for 2 h . Caesium fluoride ($1.367 \mathrm{~g}, 9 \mathrm{mmol}$) was added to the syrup, which was dried for a further hour. Dry DMF ($20 \mathrm{~cm}^{3}$) was added to the syrup under an atmosphere of nitrogen together with dry potassium iodide $(1.195 \mathrm{~g}, 7.2 \mathrm{mmol})$ and p-methoxybenzyl chloride $(1.127 \mathrm{~g}, 7.2$ mmol) at room temp. After 24 h at room temp. the reaction was complete and TLC $\left(\mathrm{CHCl}_{3}\right.$ ethyl acetate, $\left.2: 1\right)$ showed a product with $R_{\mathrm{f}}=0.60$. The solvents were evaporated under reduced pressure and the residue was extracted with ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$, washed with water $\left(50 \mathrm{~cm}^{3}\right)$ and stirred with sodium hydrogen carbonate solution ($10 \% \mathrm{w} / \mathrm{v}$) for 30 min , washed with water again, dried $\left(\mathrm{MgSO}_{4}\right)$ filtered and evaporated. The product was chromatographed on silica gel $\left(\mathrm{CHCl}_{3}-\right.$ ethyl acetate, $2: 1$). The resulting syrup was dissolved in a minimum amount of ether and light petroleum was added. After scratching for a few minutes crystals appeared. Yield 1.9 g (85%); m.p. $104-106^{\circ} \mathrm{C}$ (Found: C, 69.7; H, 7.4. Calc. for $\left.\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{9}: \mathrm{C}, 69.66 ; \mathrm{H}, 7.14\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) 0.88(6 \mathrm{H}$, $\left.\mathrm{q}, J 7.3, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.55\left(4 \mathrm{H}, \mathrm{tq}, J 7.4, \mathrm{COCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.08-2.21 (4 H, m, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.50(1 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ ex, OH), $3.38(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.5,3-\mathrm{H}$ or $1-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{dd}$, $J 10.0,2.6,1-\mathrm{H}$ or $3-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{t}, J 9.6$, $6-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{t}, J 2.6,2-\mathrm{H}), 4.50-4.86\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.03(1 \mathrm{H}, \mathrm{t}, J 9.9,5-\mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{t}, J 10.0,4-\mathrm{H}), 6.81-6.86$ (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and $7.20-7.36\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$).
(土)-2,3,6-Tri-O-benzyl-4,5-di-O-butyryl-1-O-p-Methoxy-benzyl-myo-inositol 17.-Compound $16(1.3 \mathrm{~g}, 2 \mathrm{mmol})$ was added to dry DMF $\left(20 \mathrm{~cm}^{3}\right)$ and sodium hydride $(0.2 \mathrm{~g}, 8$ $\mathrm{mmol})$. Benzyl bromide $\left(0.5 \mathrm{~cm}^{3}, 4.2 \mathrm{mmol}\right)$ was added and the reaction was stirred at room temp. for 2 h after which TLC $\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $\left.2: 1\right)$ showed a single new product, $R_{\mathrm{f}}=$ 0.80 . Methanol ($5 \mathrm{~cm}^{3}$) was added dropwise to destroy excess sodium hydride. Dichloromethane was added and the solution was washed with brine and water ($50 \mathrm{~cm}^{3} \mathrm{each}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give 17 as a solid. Yield $1.33 \mathrm{~g}(89 \%)$; m.p. $88-90^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 72.85 ; \mathrm{H}, 7.2$. Calc. for $\left.\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{O}_{9}: \mathrm{C}, 72.66 ; \mathrm{H}, 7.09 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right)$ $0.87\left(6 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.56(4 \mathrm{H}, \mathrm{tq}, J 7.4$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.08-2.21 ($4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.35 (1 H, dd, J 10.2, 2.2, 1-H or $3-\mathrm{H}$), 3.37 ($1 \mathrm{H}, \mathrm{dd}, J 9.8,2.3,3-\mathrm{H}$ or $1-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96(1 \mathrm{H}, \mathrm{t}, J 2.2,2-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{t}, J$ $9.6,6-\mathrm{H}), 4.42-4.89\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.05(1 \mathrm{H}, \mathrm{t}, J 9.7,5-\mathrm{H})$, $5.57(1 \mathrm{H}, \mathrm{t}, J 10.0,4-\mathrm{H}), 6.82-6.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and 7.18-7.35 ($17 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$); $m / z(\mathrm{CI})$ $728\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 22 \%\right], 137$ (20), 121 (100), 105 (9) and 91 (12) [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 728.3799. Calc. for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{~N}$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 728.3799].
(\pm)-2,3,6-Tri-O-benzyl-1-O-p-methoxybenzyl-myo-inositol 18.-A mixture of $17(1 \mathrm{~g}, 1.4 \mathrm{mmol})$ and sodium hydroxide (0.6 $\mathrm{g}, 20 \mathrm{mmol})$ in methanol $\left(25 \mathrm{~cm}^{3}\right)$ was heated at reflux for 30 min . The solution was cooled and TLC $\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $2: 1)$ showed a product ($R_{\mathrm{f}}=0.30$). The reaction mixture was
neutralised with carbon dioxide and partitioned between water ($20 \mathrm{~cm}^{3}$) and dichloromethane ($50 \mathrm{~cm}^{3}$), washed with brine and water ($20 \mathrm{~cm}^{3}$ each) and dried (MgSO_{4}). The dichloromethane solution was evaporated and the oily residue chromatographed on silica gel (CHCl_{3}-ethyl acetate, $2: 1$). The resulting oil was dissolved in the minimum amount of ethyl acetate and light petroleum was added. After scratching, crystals appeared. Yield $710 \mathrm{mg}\left(88 \%\right.$); m.p. $93-94{ }^{\circ} \mathrm{C}$ (Found: C, $73.75 ; \mathrm{H}, 6.7$. Calc. for $\left.\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{7}: \mathrm{C}, 73.66 ; \mathrm{H}, 6.71 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) ; 2.67$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ ex, 2 OH$), 3.17(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.3,3-\mathrm{H}), 3.35(1$ $\mathrm{H}, \mathrm{dd}, J 9.7,2.3,1-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{t}, J 9.1,5-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{t}, J 9.4,6-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{t}, J 2.3,2-\mathrm{H}), 4.02(1$ $\mathrm{H}, \mathrm{t}, J 9.3,4-\mathrm{H}), 4.52,4.58\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.0, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.78$, $4.86\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.3, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.76,4.96\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ 11.9, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 6.83-6.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$) and 7.22$7.40\left(17 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) ; m / z(\mathrm{CI}) 588$ $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 1 \%\right], 479$ (3), 449 (9), 121 (100) and 91 (9) [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 588.2961$. Calc. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{7}(\mathrm{M}+$ $\left.\left.\mathrm{NH}_{4}\right)^{+}, 588.2961\right]$.
(\pm)-2,3,6-Tri-O-benzyl-4,5-bis[bis(2-cyanoethoxy)phospho]-1-O-p-methoxybenzyl-myo-inositol 19.-A mixture of 18 (100 $\mathrm{mg}, 0.175 \mathrm{mmol}$), tetrazole ($49 \mathrm{mg}, 0.7 \mathrm{mmol}$) and bis(2-cyanoethoxy)diisopropylaminophosphine ($276 \mathrm{mg}, 1 \mathrm{mmol}$) was stirred at room temp. in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ for 1 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and 70% tertbutylhydroperoxide ($1 \mathrm{~cm}^{3}, 7.29 \mathrm{mmol}$) was added dropwise and the solution stirred for a further 30 min at room temp. The mixture was diluted with dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$ and washed twice with 10% sodium metabisulfite $(2 \times 20 \mathrm{ml})$, sodium hydrogen carbonate ($2 \times 20 \mathrm{~cm}^{3}$), water $\left(20 \mathrm{~cm}^{3}\right)$ and brine ($20 \mathrm{~cm}^{3}$). The dichloromethane solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and chromatographed on silica gel (ethyl acetate) to give the title compound as a syrup. Yield ($110 \mathrm{mg}, 67 \%$). $R_{\mathrm{f}}=0.22$ (ethyl acetate); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) 2.60-2.80(8 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $3.42(1 \mathrm{H}$, dd, $J 9.8,2.0,1-\mathrm{H}$ or $3-\mathrm{H}), 3.78(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.73-5.14\left(21 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ins} \mathrm{C}-\mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{Ph}\right.$ and 4 $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 6.78-6.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and 7.11$7.55\left(17 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 121\right.$ $\mathrm{MHz})-5.97$ and $-6.15 ; m / z \mathrm{FAB}^{+} 943\left[(\mathrm{M}+\mathrm{H})^{+}, 10 \%\right], 288$ (100), 121 (95) and 91 (100).
(\pm)-1,2,4-Tri-O-benzyl-5,6-bis[bis(2-cyanoethoxy)phospho]-myo-inositol 11ab from 19.-A mixture of 19 ($75 \mathrm{mg}, 0.079$ mmol) and DDQ ($27 \mathrm{mg}, 0.118 \mathrm{mmol}$) was stirred in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and water $\left(0.33 \mathrm{~cm}^{3}\right)$ for 1 h . The reaction was diluted with dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$ and filtered to remove the precipitate. The dichloromethane solution was washed with 10% sodium metabisulfite ($3 \times 20 \mathrm{~cm}^{3}$), sodium hydrogen carbonate solution ($20 \mathrm{~cm}^{3}$) and brine ($20 \mathrm{~cm}^{3}$), dried $\left(\mathbf{M g S O}_{4}\right)$, filtered and the dichloromethane was evaporated to give an oil. The oily residue was chromatographed on silica gel (ether-pentane, $3: 1$) to give the title compound; yield (55 mg , 84%); $R_{\mathrm{f}}=0.20$ (ethyl acetate); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) 2.63-2.83$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 3.55 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,1.7,3-\mathrm{H}$), $3.74-4.98$ ($19 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ins} \mathrm{C-H,3} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $4 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$) and 7.18-7.40 ($\left.15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 121 \mathrm{MHz}\right)-2.88$ and $-2.99 ; m / z \mathrm{FAB}^{+} 823\left[(\mathrm{M}+\mathrm{H})^{+},<1 \%\right], 728$ (13), 581 (15), 328 (29), 147 (53) and 107 (100).
(土)-2,3,6-Tri-O-benzyl-1-O-(prop-1-enyl)-myo-inositol 7.A solution of 1-O-allyl-2,3,6-tri- O-benzyl-myo-inositol $5 \mathbf{5 a b}$ $(1.55 \mathrm{~g}, 3.16 \mathrm{mmol})$ and $\mathrm{DABCO}(71 \mathrm{mg}, 0.65 \mathrm{mmol})$ in a mixture of ethanol-toluene-water ($7: 3: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) was heated. When the solution had reached reflux temperature, tris(triphenylphosphine)rhodium chloride ($202 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added and the mixture was heated under reflux for 30 min . After cooling, the mixture was diluted with water and extracted twice
with ether. The combined organic layers were dried (MgSO_{4}) and the solvent was evaporated. Chromatography on silica gel (ether-hexane, $2: 1$) gave 7 as a mixture of ca. $5: 1$ cis:trans prop-1-enyl isomers. Yield $1.27 \mathrm{~g}(82 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right)$ $1.60\left(0.5 \mathrm{H}\right.$, dd, $J 6.8,1.55$, trans $\left.-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 1.72(2.5 \mathrm{H}$, dd, $J 6.8,1.6$, cis $\left.-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.71\left(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH$)$, $2.74\left(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH), $3.26(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.4,3-\mathrm{H})$, $3.50(1 \mathrm{H}, \mathrm{dd}, J 9.3,9.3,5-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.3,1-\mathrm{H}), 3.97$ $(1 \mathrm{H}, \mathrm{dd}, J 9.4,9.4,6-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{dd}, J 9.5,9.5,4-\mathrm{H}), 4.13(1 \mathrm{H}$, dd, $J 2.4,2.4,2-\mathrm{H}), 4.50-5.02\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right.$ and 3 $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.11-6.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)$ and $7.29-7.46(15$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).
(\pm)-2,3,6-Tri-O-benzyl-1-O-(cis-prop-1-enyl)-myo-inositol 8ab.-A solution of 1-O-allyl-2,3,6-tri- O-benzyl-myo-inositol $5 \mathbf{a b}^{29}(2 \mathrm{~g}, 4.08 \mathrm{mmol})$ and freshly sublimed potassium tertbutoxide ($2.28 \mathrm{~g}, 20 \mathrm{mmol}$) in dry DMSO ($50 \mathrm{~cm}^{3}$) was stirred for 3 h at $50^{\circ} \mathrm{C}$ when HPTLC (ether) showed complete conversion of the starting material $\left(R_{\mathrm{f}}=0.78\right)$ into a single product ($R_{\mathrm{f}}=0.80$). Water ($50 \mathrm{~cm}^{3}$) was added to the brown solution, which was then extracted with ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness to give 8ab ($1.97 \mathrm{~g}, 4.02 \mathrm{mmol}, 98 \%$); m.p. 101$103{ }^{\circ} \mathrm{C}$ (from ethanol-water) (Found: C, 73.3; H, 6.95. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}: \mathrm{C}, 73.45 ; \mathrm{H}, 6.99 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 1.67(3 \mathrm{H}$, dd, $\left.J 6.9,1.65, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.76\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH$)$, $2.79\left(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{D}_{2} \mathrm{O} \mathrm{ex}, \mathrm{OH}\right), 3.21(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.4,3-\mathrm{H})$, 3.42 (1 H , ddd, $J 9.2,9.2,2.2, \mathrm{D}_{2} \mathrm{O}$ shake gives dd, $9.2,9.2,5-\mathrm{H}$), $3.55(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.4,1-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{dd}, J 9.5,9.5,6-\mathrm{H}), 4.03$ (1 H , ddd, $J 9.5,9.5,2.0, \mathrm{D}_{2} \mathrm{O}$ shake gives dd, $J 9.5,9.5,4-\mathrm{H}$), $4.07(1 \mathrm{H}, \mathrm{dd}, J 2.4,2.4,2-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{dq}, J 6.7,6.7, \mathrm{CH}=\mathrm{CH}-$ $\left.\mathrm{CH}_{3}\right), 4.49,4.56\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.6, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.70,4.88(2 \mathrm{H}$, $\left.\mathrm{AB}, J_{\mathrm{AB}} 11.6, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.77,4.88\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.6\right.$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.08\left(1 \mathrm{H}\right.$, dd$\left., J 6.2,1.65, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)$ and $7.23-$ $7.42\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 9.44(\mathrm{q}, \mathrm{CH}=$ CH-CH3 $), 74.44,75.35\left(2 \mathrm{t}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 72.07, 74.24, 74.96, $79.43,80.28,83.23$ (6 d , inositol ring C), 100.97 (d, $\mathrm{CH}=\mathrm{CH}-$ CH_{3}), 127.50, 127.66, 127.79, 128.18, 128.28, 128.41, 128.48 (7 d , $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 137.60, $138.43\left(2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $145.34(\mathrm{~d}$, $\left.\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right) ; m / z \mathrm{FAB}^{+} 489\left[(\mathrm{M}-\mathrm{H})^{+}, 0.5 \%\right], 399$ (3), 181 (15) and 91 (100); $m / z \mathrm{FAB}^{-} 979\left[(2 \mathrm{M}-\mathrm{H})^{-}, 30 \%\right], 643$ $\left[(\mathbf{M}+\mathrm{NBA})^{-}, 60\right], 489\left[(\mathrm{M}-\mathrm{H})^{-}, 100\right], 399(20)$ and 381 (20).
(土)-2,3,6-Tri-O-benzyl-4,5-bis[bis(2-cyanoethoxy)phospho]-1-O-(cis-prop-1-enyl)-myo-inositol 10ab.-A solution of bis-(2cyanoethoxy)(diisopropylamino)phosphine ($7 \mathrm{~g}, 26 \mathrm{mmol}$) in dichloromethane ($50 \mathrm{~cm}^{3}$) was added to a solution of 8ab (1.24 $\mathrm{g}, 2.6 \mathrm{mmol})$ and tetrazole ($2.19 \mathrm{~g}, 31.2 \mathrm{mmol}$) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temp. for 1 h ($\delta_{\mathrm{P}} 140.70,140.47$); 10% water in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added and stirring continued for 30 min . 2,6-Lutidine $\left(2 \mathrm{~cm}^{3}\right)$ followed by tert-butyl hydroperoxide ($20 \mathrm{~cm}^{3}, 70 \%$ in water) was then added and stirring continued overnight. The solution was washed with saturated aqueous sodium hydrogen carbonate $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were evaporated and the residue chromatographed on silica gel with $0-10 \%$ ethyl acetate in hexane and then $0-10 \%$ ethanol m ethyl acetate. The product was recrystallised from ethanol to give $10 a b(1.43 \mathrm{~g}, 64 \%$); m.p. $118-120^{\circ} \mathrm{C}$ (from ethanol); R_{f} (ethyl acetate: ethanol 9:1) = 0.76 (Found: C, $58.5 ; \mathrm{H}, 5.55 ; \mathrm{N}, 6.5$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2}$: $\mathrm{C}, 58.47 ; \mathrm{H}, 5.61 ; \mathrm{N}, 6.49 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 1.63(3 \mathrm{H}$, dd, $\left.J 6.8,1.6, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.16-2.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.65-$ $2.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, J 9.5,2.0,3-\mathrm{H}), 3.66(1$ $\mathrm{H}, \mathrm{dd}, J 9.7,2.0,1-\mathrm{H}), 3.89-4.31\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, 2-\mathrm{H}, 6-\right.$ H), 4.38-4.99 (9 H, m, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{H}, 5-\mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 6.06$ (11 H , dd, $J 6.8,1.6, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$) and $7.26-7.40(15 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 9.34\left(\mathrm{q}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 18.97$,
19.10, 19.23, 19.33 ($4 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 62.11, 62.70 (2 t , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 71.97, 74.70 ($2 \mathrm{t}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 73.76, 74.83, 78.10, $78.52,79.60,82.48$ (6 d , inositol ring C), 102.04 (d, $\mathrm{CH}=\mathrm{CH}-$ CH_{3}) $116.60,116.83,116.93$ ($3 \mathrm{~s}, \mathrm{CN}$), $126.85,127.31,127.60$, 127.70, 127.92, 128.12, 128.22, 128.34, $128.51\left(9 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 137.01, 137.85, $138.21\left(3 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $144.66(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}-$ $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 36 \mathrm{MHz}\right)-3.57,-3.70 ; \mathrm{m} / \mathrm{z} \mathrm{FAB}^{+} 863$ $\left[(\mathrm{M}+\mathrm{H})^{+}, 1.3 \%\right], 771\left[\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}, 0.3\right], 181$ (6), 144 (8) and $91 \quad\left[\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}, \quad 100\right] ; m / z \quad \mathrm{FAB}^{-} \quad 808 \quad[(\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)^{-}, 55 \%$], 718 (12), 203 (100), 150 (85) and 97 (70) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 863.2822$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{O}_{12} \mathrm{~N}_{4} \mathrm{P}_{2}$ $\left.(\mathrm{M}+\mathrm{H})^{+}, 863.2822\right]$.
(土)-2,3,6-Tri-O-benzyl-4,5-bis[bis(2-cyanoethoxy)phospho]-1-O-(prop-1-enyl)-myo-inositol 9.-Phosphorylation of 7 in an analogous fashion to that for 8ab as above gave 9 (mixture of cis- and trans-isomers): $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 1.51(0.5 \mathrm{H}, \mathrm{dd}, J$ $6.8,1.6$, trans $-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \mathrm{H}_{3}$), $1.63(2.5 \mathrm{H}$, dd, $J 6.8,1.6$, cis-$\left.\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.10-2.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.56-2.76(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $3.50(1 \mathrm{H}, \mathrm{dd}, J 9.5,2.0,3-\mathrm{H}$), $3.66(1 \mathrm{H}, \mathrm{dd}, J$ 9.7, 2.0, 1-H), 3.89-4.31 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, 2-\mathrm{H}, 6-\mathrm{H}$), 4.384.99 ($9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{H}, 5-\mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$), 6.03-6.13 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)$ and $7.26-7.40\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
(\pm)-1,2,4-Tri-O-benzyl-5,6-bis[bis(2-cyanoethoxy)phospho]-myo-inositol 11ab from 10ab and 9.-(a) A solution of mercury(II) chloride ($300 \mathrm{mg}, 1.1 \mathrm{mmol}$) in acetone-water ($10: 1$ $\mathrm{v} / \mathrm{v}, 4 \mathrm{~cm}^{3}$) was added dropwise with stirring to a mixture of 9 ($949 \mathrm{mg}, 1.1 \mathrm{mmol}$) and yellow mercury(II) oxide (300 mg) in acetone-water ($9: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~cm}^{3}$). After the addition was complete, stirring was continued for a further 5 min . The mercury(II) oxide was removed by filtration through Celite, the solvents evaporated and the residue taken up in ethyl acetate ($50 \mathrm{~cm}^{3}$). The solution was washed with semisaturated aqueous potassium iodide solution ($50 \mathrm{~cm}^{3}$), dried and evaporated. Chromatography on silica gel using hexane \longrightarrow ethyl acetate \longrightarrow ethyl acetate-ethanol ($9: 1 \mathrm{v} / \mathrm{v}$) gave the pure title compound ($786 \mathrm{mg}, 87 \%$) as a syrup.
(b) A solution of $10 \mathrm{ab}(470 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $1 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl -methanol ($1: 5,30 \mathrm{~cm}^{3}$) was heated under reflux for 30 min when TLC (ethyl acetate-ethanol, 9:1) showed complete conversion of the starting material ($R_{\mathrm{f}} 0.76$) into a single product ($R_{\mathrm{f}} 0.71$). After cooling, the mixture was treated with an excess of sodium hydrogen carbonate and the solvents were evaporated. The residue was extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and the solvent was evaporated to give 11ab ($426 \mathrm{mg}, 95 \%$) as a syrup which could not be crystallised: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) 2.14-2.46$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.60-2.72\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{OH}\right.$, $\mathrm{OH} \mathrm{D}_{2} \mathrm{O}$ ex), $3.53(1 \mathrm{H}$, dd, $J 9.9,2.1,3-\mathrm{H}), 3.62(1 \mathrm{H}$, ddd, $J 9.9,7.3,2.4, \mathrm{D}_{2} \mathrm{O}$ ex gives dd, $\left.J 9.9,2.4,1-\mathrm{H}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J$ $9.4,9.4,6-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{dd}, J 2.3,2.3,2-\mathrm{H}), 3.90-4.37(8 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.43(1 \mathrm{H}, \mathrm{q}, J 9.1,5-\mathrm{H}), 4.56,4.67\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ $\left.11.3, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.75,4.93\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.6, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.79$, $4.92\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.4, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.83(1 \mathrm{H}, \mathrm{q}, J 9.3,4-\mathrm{H})$ and 7.22-7.41 ($15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 18.65$, 18.78, 18.84 ($3 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 62.02, 62.08, 62.66 (3 t , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 71.97, 74.05, 74.86 ($3 \mathrm{t}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 71.55, 75.80, $77.65,78.40,79.23$, (5 d , inositol ring C), 116.64, 116.86, 116.99 ($3 \mathrm{~s}, \mathrm{CN}$), 127.08, 127.50, 127.57, 127.63, 127.86, 128.15, 128.22, 128.31 ($8 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 136.91, 137.85 and 138.04 ($3 \mathrm{~s}, \mathrm{CH}_{2}-$ $\left.C_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 36 \mathrm{MHz}\right)-5.52$ and $-5.65 ; m / z \mathrm{FAB}^{+} 823$ $\left[(\mathrm{M}+\mathrm{H})^{+}, 1.3 \%\right], 222(8), 181(6), 144(8)$ and $91\left[\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}\right.$, 100]; $m / z \mathrm{FAB}^{-} 768$ [(M $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)^{-}, 45 \%$], 203 (100), 150 (95) and 97 (80) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 823.2509$. Calc. for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{O}_{12} \mathrm{~N}_{4} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}$823.2509].
(\pm)-2,3,6-Tri-O-benzyl-1-O-[bis(2-cyanoethoxy)thiophospho]-4,5-bis[bis(2-cyanoethoxy)phospho]-myo-inositol 12ab.-

Bis(2-cyanoethoxy)diisopropylaminophosphine ($670 \mathrm{mg}, 2.5$ $\mathrm{mmol})$ was added to a solution of $11 \mathrm{ab}(412 \mathrm{mg}, 0.5 \mathrm{mmol})$ and tetrazole ($210 \mathrm{mg}, 3 \mathrm{mmol}$) in dichloromethane ($25 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 1 h . Dry pyridine ($5 \mathrm{~cm}^{3}$) and sulfur ($320 \mathrm{mg}, 10 \mathrm{mmol}$) was added and the solution stirred for another 24 h . The solvent was evaporated and the residue chromatographed on silica gel [eluent hexane \longrightarrow ethyl acetate \longrightarrow ethyl acetate-ethanol ($9: 1 \mathrm{v} / \mathrm{v}$)] to give the pure compound as a syrup ($405 \mathrm{mg}, 79 \%$) after evaporation of the solvent. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 2.03-2.47\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, 2.49-2.79 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $3.61(1 \mathrm{H}, \mathrm{dd}, J 9.9,1.8,3-\mathrm{H}$), 3.82-4.46 ($14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, 1-\mathrm{H}, 6-\mathrm{H}$), $4.40(1 \mathrm{H}$, br s, $2-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{q}, J 9.2,5-\mathrm{H}), 4.67,4.75\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.3\right.$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.87\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.85(1 \mathrm{H}, \mathrm{q}, J 8.6,4-\mathrm{H})$, 4.84, $4.92\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.7, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $7.27-7.44(15 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 18.78,18.91,19.14,19.20$, 19.27 ($5 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 62.11, 62.18, 62.66 ($3 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 72.33, 74.34, 77.26 ($3 \mathrm{t}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 74.63, 75.25, 78.04, 78.36, 78.46, 79.17 (6 d, inositol ring C), 116.41, 116.51, 116.57, 116.83, 116.96 ($5 \mathrm{~s}, \mathrm{CN}$), 126.40, 127.60, 127.76, 128.05, 128.18, 128.31, 128.48 ($7 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) , 136.86, 137.72 and 137.85 $\left(3 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 36 \mathrm{MHz}\right) 66.83,-2.83$ and -3.10 ; $m / z \mathrm{FAB}^{+} 1025\left[(\mathrm{M}+\mathrm{H})^{+}, 1.3 \%\right], 181$ (6), 144 (10) and $91\left[\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}, 100\right] ; m / z \mathrm{FAB}^{-} 970\left[\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)^{-}\right.$, 45%], 219 (30), 203 (100), $150(90)$ and 97 (80) [Found: (M + $\mathrm{H})^{+}$, 1025.2475. Calc. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{~N}_{6} \mathrm{P}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$, 1025.2475].
(\pm)-myo-Inositol 1-Phosphorothioate 4,5-Bisphosphate 4ab.Ammonia was condensed into a three-neck flask at $-78^{\circ} \mathrm{C}$. An excess of sodium was added to dry the liquid ammonia which was then distilled into a second three-neck flask and kept at $-78^{\circ} \mathrm{C}$. Sodium was added until the solution remained blue. Compound 12ab ($120 \mathrm{mg}, 117 \mu \mathrm{~mol}$) was dissolved in dry dioxane ($2 \mathrm{~cm}^{3}$) and added to the sodium-liquid ammonia mixture. After stirring for 15 min the reaction was quenched by adding ethanol to the mixture, which became colourless. The ammonia was evaporated and the crude product taken up in water. The aqueous solution was treated with Dowex resin $\left(\mathrm{H}^{+}\right)$ until a pH of 6 was reached. The resin was filtered off and washed well with water. A few drops of triethylamine were added to the filtrate which was then evaporated to dryness. The crude product was purified by ion-exchange chromatography on DEAE Sephadex A- 25 eluting with a gradient of triethylammonium hydrogen carbonate buffers ($0.1-1 \mathrm{~mol} \mathrm{dm}^{-3}$), pH 8.0. The triethylammonium salt of 4 ab eluted at approx. 800 $\mathrm{mmol} \mathrm{dm}{ }^{-3}$ and after evaporation of TEAB the product was obtained as a glass. Yield $54 \mu \mathrm{~mol}(46 \%) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} 8 ; 300\right.$ MHz), $3.62(1 \mathrm{H}, \mathrm{dd}, J 9.8,2.5,3-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 9.5,9.5$, $6-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{q}, J 9.2,5-\mathrm{H}), 4.20-4.11(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 1-\mathrm{H})$ and $4.25(1 \mathrm{H}, \mathrm{q}, J 9.4,4-\mathrm{H}) ; \delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} 8 ; 36 \mathrm{MHz}\right) 42.13,4.58$ and $3.50 ; \mathrm{m} / \mathrm{zFAB}{ }^{+} 538\left[\left(\mathrm{M}+\mathrm{Et}_{3} \mathrm{NH}\right)^{+}, 10 \%\right], 436\left(\mathrm{M}^{+}, 3\right)$ and $102\left(\mathrm{Et}_{3} \mathrm{NH}^{+}, 100\right)$ (Found: $\mathrm{M}^{+}, 538.0678$. Calc. for $\left.\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{O}_{14} \mathrm{NP}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{Et}_{3} \mathrm{NH}\right)^{+} 538.0678\right)$.

S-\{2-[N-Methyl-N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]ethoxycarbonylmethyl $\}-(\pm)$-myo-inositol 1-Phosphorothioate 4,5-Bisphosphate 20.-A mixture of 4ab ($30 \mu \mathrm{~mol}$) and $4-\{N$ - [2-(iodoacetoxy)ethyl]- N-methylamino\}-7-nitro-2,1,3-benzoxadiazole ($15 \mathrm{mg}, 33 \mu \mathrm{~mol}$) in ethanol was shielded from light and stirred for 2 h at $0^{\circ} \mathrm{C}$. The product was purified by ion-exchange chromatography on DEAE sephadex A-25 eluting with a gradient of triethylammonium hydrogen carbonate buffers (0.1$1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), pH 8.0 .20 Eluted at $c a .800 \mathrm{mmol} \mathrm{dm}^{-3}$ and was obtained as a dark orange glass after evaporation of TEAB. Yield $17 \mu \mathrm{~mol}(57 \%) ; \delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} 7.7 ; 36 \mathrm{MHz} ;{ }^{1} \mathrm{H}\right.$-coupled) 1.72 (d, $J 8.5$), 3.01 (d, $J .5$) and 19.86 (q, $J 9.1$); $m / z(+\mathrm{ve}$ ion FAB) $815\left[\left(\mathrm{M}+\mathrm{Et}_{3} \mathrm{NH}\right)^{+}, 3 \%\right], 799\left[\left(\mathrm{M}+\mathrm{Et}_{3} \mathrm{NH}-\mathrm{O}\right)^{+}\right.$,

5], $714\left(\mathrm{M}^{+}, 12\right), 698\left[(\mathrm{M}-\mathrm{O})^{+}, 14\right], 596\left[\left(\operatorname{Ins}(1,4,5) \mathrm{P}_{3} \mathrm{~S}-\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}+\mathrm{Et}_{3} \mathrm{NH}\right)^{+}$, 27] and $102\left(\mathrm{Et}_{3} \mathrm{NH}^{+}, 100\right)$.

Bis- $(+)-\omega$-Camphanate of 1D-(+)-1-O-Allyl-2,3,6-tri-O-ben-zyl-myo-inositol 6a.-A mixture of (土)-1-O-allyl-2,3,6-tri- O -benzyl-myo-inositol ($3.432 \mathrm{~g}, 7 \mathrm{mmol}$) and (-)- ω-camphanic acid chloride $(6.067 \mathrm{~g}, 28 \mathrm{mmol})$ in dry pyridine $\left(50 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temp. The solution was cooled in icewater, water ($0.5 \mathrm{~cm}^{3}$) was added, and the solution was stirred for another 1 h at room temp., after which HPTLC (ether-light petroleum, $1: 1$) showed two products ($R_{\mathrm{f}} 0.52$ and 0.42). Ether ($100 \mathrm{~cm}^{3}$) and dichloromethane ($50 \mathrm{~cm}^{3}$) were added and the organic phase was washed successively with saturated aqueous potassium chloride, ice-cold $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, saturated aqueous potassium chloride and saturated aqueous sodium hydrogen carbonate ($200 \mathrm{~cm}^{3}$ each) and then dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvents gave a syrup, which was taken up in ether ($40 \mathrm{~cm}^{3}$) and kept at $-20^{\circ} \mathrm{C}$ overnight. The crystals formed (1.2 g) were filtered off, the mother liquor evaporated, and the residue was dissolved in a mixture of ether ($20 \mathrm{~cm}^{3}$) and methanol ($5 \mathrm{~cm}^{3}$) to give more crystals (1 g). Overall yield: $2.2 \mathrm{~g}(2.6 \mathrm{mmol}, 74 \%)$ of $6 \mathrm{a} ; R_{\mathrm{f}} 0.42$; m.p. $142-$ $143{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{21}+19.4\left(c 5\right.$ in CHCl_{3}) (Found: $\mathrm{C}, 70.4 ; \mathrm{H}, 6.75$. Calc. for $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{O}_{12}: \mathrm{C}, 70.57 ; \mathrm{H}$, $6.87 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz}\right) 0.747\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.753(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.59-1.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.77-1.88 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.27-2.39 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.44 (1 H, dd, J 9.7, 2.1, 3-H), $3.55(1 \mathrm{H}, \mathrm{dd}, J 10.7$, 2.1, 1-H), 3.96-4.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $4.14(1 \mathrm{H}$, dd, $J 2.0$, $2.0,2-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{dd}, J 9.6,9.6,6-\mathrm{H}), 4.45,4.59\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{JB}}\right.$ $\left.11.5, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.85,4.87\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}_{\mathrm{AB}} 12.1, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.62$, $5.02\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.3, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.18(1 \mathrm{H}$, ddt, $J 10.4,1.4$, 1.4, cis $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.27 (1 H , ddt, J 17.2, 1.6, 1.6, trans$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.34(1 \mathrm{H}, \mathrm{dd}, J 9.6,9.6,5-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{dd}, J 9.9$, $9.9,4-\mathrm{H}), 5.83\left(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.4,5.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 7.20 $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 16.28,16.54,16.64$ (3 q), 28.80, 30.76 (2 t), 54.00, 54.78 (2 s), $71.39,71.84,74.15(3 \mathrm{t}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 72.82, 73.37, 74.08, 78.07, 78.23, 80.18 (6 d , inositol ring C), 91.05 (s), $117.45\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), $126.85,127.24,127.34,127.708,127.83,127.96,128.18,128.28$, 128.39 ($9 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $134.12\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 137.04$, 138.17 ($2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 166.36, 166.62 and 177.91 (3 s); m / z $\mathrm{FAB}^{+} 851\left[(\mathrm{M}+\mathrm{H})^{+}, 7 \%\right], 181(13), 109(8)$ and $91(100)$.

Bis-(-)- ω-Camphanate of $1 \mathrm{~L}-(-)-1-\mathrm{O}-$ Allyl-2,3,6-tri-O-ben-zyl-myo-inositol $\mathbf{6 b}$.-The mother liquor left from the crystallisation of 6 a was kept at $-20^{\circ} \mathrm{C}$ for several days when a solid had formed at the bottom of the flask. The supernatant was filtered off and the solid dissolved in hot ether. After leaving the solution in the fridge for two days crystals had formed which were collected to give $6 \mathrm{~b}(2.4 \mathrm{~g}, 2.8 \mathrm{mmol}, 80 \%) ; R_{\mathrm{f}} 0.52 ; \mathrm{m} . \mathrm{p}$. $174-177{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{18}-25.0$ (c 4.2 in CHCl_{3}) (Found: C, 70.7; H, 6.8. Calc. for $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{O}_{12}$: C, 70.57; $\mathrm{H}, 6.87 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 0.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.57-1.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.76-1.98 (4 H, m, CH CH_{2}), 2.16-2.26 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.39(1 \mathrm{H}, \mathrm{dd}, J 9.9,2.0,3-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 9.9,2.0$, $1-\mathrm{H}), 4.01\left(2 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{dd}, J 1.5,1.5$, $2-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{dd}, J 9.8,9.8,6-\mathrm{H}), 4.47,4.54\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.7\right.$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.63, $4.95\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.2, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 4.86, 4.86 ($2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.4, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $5.18(1 \mathrm{H}, \mathrm{ddt}, J 10.4,1.4,1.4$, cis $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.27\left(1 \mathrm{H}\right.$, ddt, $J 17.2,1.6,1.6$, trans $-\mathrm{CH}_{2}{ }^{-}$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.34(1 \mathrm{H}, \mathrm{dd}, J 9.6,9.6,5-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{dd}, J 9.9,9.9$, $4-\mathrm{H}), 5.83\left(1 \mathrm{H}\right.$, ddt, $\left.J 17.2,10.4,5.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.22-$ $7.42\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 16.28,16.44$, 16.54 (3 q), $28.70,31.10(2 \mathrm{t}), 53.58,53.74,54.56,54.62$ (4 s), $71.42,71.97,72.26,74.79\left(4 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $72.26,73.56,74.21,77.81,78.49,80.02$ (6 d , inositol ring C), 90.66
(s), $117.16\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 126.95,127.42,127.53,127.66$, 127.86, 128.12, $128.31\left(7 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 134.21\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{CH}=\right.$ CH_{2}), 137.23, $138.17,138.24\left(3 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 166.65,177.87$ and $178.00(3 \mathrm{~s}) ; m / z$ as $\mathbf{6 a}$.

1D-(+)-1-O-Allyl-2,3,6-tri-O-benzyl-myo-inositol 5a.-The (+)-biscamphanate $6 \mathrm{a}(1.26 \mathrm{~g}, 1.48(\mathrm{mmol})$ was dissolved in methanol $\left(100 \mathrm{~cm}^{3}\right)$ containing $\mathrm{NaOH}(1.3 \mathrm{~g})$. The solution was heated under reflux for 1 h when TLC (ether) showed complete conversion of the starting material $\left(R_{\mathrm{f}} 0.79\right)$ to a single product ($R_{\mathrm{f}} 0.59$). After cooling, the solution was neutralised with solid CO_{2}. Water ($100 \mathrm{~cm}^{3}$) was added and the solution extracted twice each with chloroform ($100 \mathrm{~cm}^{3}$). The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated to give $5 \mathrm{a}(703 \mathrm{mg}$, $1.44 \mathrm{mmol}, 97 \%$); m.p. $97-98^{\circ} \mathrm{C}$ (lit., ${ }^{42} 98^{\circ} \mathrm{C}$) (Found: C, 73.4; $\mathrm{H}, 6.9$. Calc. for $\left.\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}: \mathrm{C}, 73.45 ; \mathrm{H}, 6.99 \%\right) ;[\alpha]_{\mathrm{D}}{ }^{18}+21.5(c$ 4 in $\left.\mathrm{CHCl}_{3}\right)$, $\left[\right.$ lit., $\left.{ }^{42}[\alpha]_{\mathrm{D}}+20\left(\mathrm{CHCl}_{3}\right)\right] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right)$ 2.56, 2.60 ($2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ ex, OH), $3.20(1 \mathrm{H}, \mathrm{dd}, J 9.7,2.2,3-$ H), 3.28 ($1 \mathrm{H}, \mathrm{dd}, J 9.7,2.2,1-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dd}, J 9.3,9.3,5-\mathrm{H})$, 3.87 ($1 \mathrm{H}, \mathrm{dd}, J 9.4,9.4,6-\mathrm{H}), 4.04$ (1 H , dd, $J 9.5,9.5,4-\mathrm{H}), 4.06$ $(1 \mathrm{H}, \mathrm{dd}, J 2.5,2.5,2-\mathrm{H}), 4.10(2 \mathrm{H}$, ddd, $J 5.3,1.4,1.4$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.55, $4.61\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.7, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.75$, $4.96\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.9, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right), 4.79,4.89\left(2 \mathrm{H}, \mathrm{AB}, J_{4 \mathrm{~B}} 11.2\right.$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.19\left(1 \mathrm{H}\right.$, ddt, $J 10.4,1.4,1.4$, cis $\left.-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.31 (1 H, ddt, $J 17.2,1.6,1.6$, trans $\left.-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.91(1 \mathrm{H}$, ddt, $\left.J 17.2,10.4,5.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.25-7.42(15 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{MHz}\right) 71.45,72.26,74.02,75.35(4 \mathrm{t}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 72.20, 73.53, 74.60, 79.95, 80.76, 80.83 (6 d , inositol ring C), $116.73\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 127.37$, 127.63, 127.70, 127.79, 127.96, 128.12, 128.38, 128.44 (8 d , $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 134.67\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 137.85$ and $138.76(2 \mathrm{~s}$, $\left.\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; m / z\left(70 \mathrm{eV} \text { EI) } 399 \text { [(} \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}, 2 \%\right], 307,181$ (5), 131 (10), 109 (5) and $91\left[\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}, 100 \%\right] ; \mathrm{m} / \mathrm{z}$ (CI, Isobutane) $491(\mathrm{M}+\mathrm{H})^{+}, 399(10), 309,181(20), 131(20), 107$ (100), 91 (80) and 69 (20).

1L-(-)-1-O-Allyl-2,3,6-tri-O-benzyl-myo-inositol 5b.-The (-)-biscamphanate $6 \mathrm{~b}(2.37 \mathrm{~g}, 2.79 \mathrm{mmol})$ in methanol (200 cm^{3}) containing $\mathrm{NaOH}(2.4 \mathrm{~g})$ was heated under reflux for 1 h . Work-up as for 6 a gave $\mathbf{5 b}(1.36 \mathrm{~g}, 2.78 \mathrm{mmol}, 100 \%$); m.p. $96-$ $98^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{29} 96-98^{\circ} \mathrm{C}$) (Found: C, 73.5; H, 6.95. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}$: C, 73.45; $\mathrm{H}, 6.99 \%$); $[\alpha]_{\mathrm{D}}^{19}-21.9$ (c 4.3 in CHCl_{3}) $\left[\right.$ lit., ${ }^{29}[\alpha]_{\mathrm{D}}^{26}-20.5$ ($c 1$ in CHCl_{3})]. Mass spectral and NMR spectroscopic data were identical to $5 \mathbf{5 a}$.

1D-(+)-2,3,6-Tri-O-benzyl-1-O-(cis-prop-1-enyl)-myo-inositol 8a.-Compound $5 \mathbf{5 a}(840 \mathrm{mg}, 1.71 \mathrm{mmol})$ and freshly sublimed potassium tert-butoxide ($778 \mathrm{mg}, 6.84 \mathrm{mmol}$) in dry DMSO ($30 \mathrm{~cm}^{3}$) was stirred for 3 h at $50^{\circ} \mathrm{C}$. The solution was worked up as described for the racemic compound to give $\mathbf{8 a}$ $\left(815 \mathrm{mg}, 1.66 \mathrm{mmol}, 97 \%\right.$); m.p. $116-118{ }^{\circ} \mathrm{C}$ (from ethanolwater) (Found: C, 73.5; H, 7.0. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}$: C, 73.45 ; H , 6.99%) ; $[\alpha]_{\mathrm{D}}^{11}+40.6$ (c 4 in CHCl_{3}). Mass spectra and NMR spectroscopic data were identical to 8ab.

1L-(-)-2,3,6-Tri-O-benzyl-1-O-(cis-prop-1-enyl)-myo-inositol $\mathbf{8 b}$.-Compound 5 b ($546 \mathrm{mg}, 1.11 \mathrm{mmol}$) and freshly sublimed potassium tert-butoxide ($505 \mathrm{mg}, 4.44 \mathrm{mmol}$) in dry DMSO ($20 \mathrm{~cm}^{3}$) was stirred for 3 h at $50^{\circ} \mathrm{C}$. The solution was worked up as described for the racemic compound to give $\mathbf{8 b}$ ($536 \mathrm{mg}, 1.09 \mathrm{mmol}, 98 \%$); m.p. $117-119^{\circ} \mathrm{C}$ (from ethyl acetatehexane) (Found: C, 73.6; H, 7.0. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{C}, 73.45$; $\mathrm{H}, 6.99 \%$) $[\alpha]_{\mathrm{D}}^{19}-41.1$ (c 4.3 in CHCl_{3}). Mass spectra and NMR spectroscopic data were identical to $8 \mathbf{8 a b}$.

Elucidation of the Absolute Configuration of 5b.-Compound $\mathbf{5 b}$ was first isomerised to the cis-prop-1-enyl compound $\mathbf{8 b}$ which was then deprotected to the known triol 1D-(-)-1,2,4-tri-
O-benzyl-myo-inositol. Compound $\mathbf{8 b}(413 \mathrm{mg}, 843 \mu \mathrm{~mol})$ in $\mathrm{MeOH}-1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(5: 1,10 \mathrm{~cm}^{3}\right)$ was heated under reflux for 30 min after which TLC (ether) showed complete conversion of the starting material ($R_{\mathrm{f}} 0.90$) to a single product ($R_{\mathrm{f}} 0.59$). The solution was allowed to cool and an excess of NaHCO_{3} was added. The solvent was evaporated and the residue was extracted with chloroform, dried and the solvent evaporated to give $1 \mathrm{D}-(-)$-1,2,4-(tri- O-benzyl-myo-inositol ($329 \mathrm{mg}, 731 \mu$ $\mathrm{mol}, 87 \%$); m.p. $116-118^{\circ} \mathrm{C}$ (from ethanol-water) (lit., ${ }^{29} 118-$ $120^{\circ} \mathrm{C}$; lit., ${ }^{41} 117-119^{\circ} \mathrm{C}$ for the enantiomer); $[\alpha]_{\mathrm{D}}^{18}-10.1(c$ 2.5 in CHCl_{3}) (lit., $^{29}-9.0$; lit., ${ }^{41}+15.5$ for the enantiomer); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 2.3-2.7\left(3 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ ex, 3 OH$), 3.27(1$ $\mathrm{H}, \mathrm{dd}, J 9.7,2.6,1-\mathrm{H}), 3.46$ (1 H, dd, $J 9.1,9.1,5-\mathrm{H}), 3.52(1 \mathrm{H}$, dd, $J 9.5,2.6,3-\mathrm{H}), 3.68(1 \mathrm{H}$, dd, $J 9.2,9.2,4-\mathrm{H}), 4.01(1 \mathrm{H}$, dd, J $9.5,9.5,6-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{dd}, J 2.6,2.6,2-\mathrm{H}), 4.58,4.68(2 \mathrm{H}, \mathrm{AB}$, $\left.J_{\mathrm{AB}} 11.7, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.83,4.87\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.5, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 4.72, $4.92\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.3, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $7.28-7.33(15 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

1D-(+)-2,3,6-Tri-O-benzyl-4,5-bis[bis(2-cyanoethoxy)phos-pho]-1-O-(cis-prop-1-enyl)-myo-inositol 10a.-To a mixture of $8 \mathbf{a}(348 \mathrm{mg}, 0.71 \mathrm{mmol})$ and tetrazole ($615 \mathrm{mg}, 8.8 \mathrm{mmol}$) in dry dichloromethane ($20 \mathrm{~cm}^{3}$) was added bis(2-cyanoethoxy)diisopropylaminophosphine $(1.9 \mathrm{~g}, 7.1 \mathrm{mmol})$. After stirring at room temp. for 1 h water in THF ($10 \% \mathrm{v} / \mathrm{v}$) was added and the solution was stirred for another 30 min . 2,6Lutidine ($0.5 \mathrm{~cm}^{3}$) and tert-butyl hydroperoxide ($5 \mathrm{~cm}^{3}$) was then added and stirring continued overnight. Work-up as for compound 8 gave 10 a ($485 \mathrm{mg}, 0.57 \mathrm{mmol}, 80 \%$); m.p. 131$132{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, $58.6 ; \mathrm{H}, 5.65 ; \mathrm{N}, 6.5$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2}: \mathrm{C}, 58.47 ; \mathrm{H}, 5.61 ; \mathrm{N}, 6.49 \%$; $[\alpha]_{\mathrm{D}}^{19}+11.5$ ($c=3.5$ in CHCl_{3}). Mass spectra and NMR spectroscopic data were identical to those for 8ab.

1D-(+)-2,3,6-Tri-O-benzyl-4,5-bis[bis-(2-cyanoethoxy)phos-pho]-myo-inositol 11a.-Compound $10 \mathrm{a}(200 \mathrm{mg}, 232 \mu \mathrm{~mol})$ was heated under reflux with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$-methanol ($1: 5$; $10 \mathrm{~cm}^{3}$) and work-up as for the racemic compound gave 11a $(183 \mathrm{mg}, 96 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}^{15}+8.5\left(c 4.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; the chiral material has been alluded to in preliminary form ${ }^{42}$ with $[\alpha]_{\mathrm{D}}+5\left(\mathrm{CHCl}_{3}\right)$. Mass spectra and NMR spectroscopic data were identical to those for 11 ab .

1D-(+)-2,3,6-Tri-O-benzyl-1-O-[bis-(2-cyanoethoxy)thio-phospho]-4,5-bis-[bis-(2-cyanoethoxy)phospho]-myo-inositol 12a.-Compound $11 \mathrm{a}(152 \mathrm{mg}, 185 \mu \mathrm{~mol})$ was phosphitylated and sulfoxidised analogously to the racemic compound to give 12a ($140 \mathrm{mg}, 137 \mu \mathrm{~mol}, 74 \%$) after column chromatography. $[\alpha]_{\mathrm{D}}^{16}+10.5\left(c 2.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Mass spectra and NMR spectroscopic data were identical to those for 12ab.

1D-(-)-myo-Inositol 1-Phosphorothioate 4,5-Bisphosphate 4a.-Compound $12 \mathrm{a}(50.6 \mathrm{mg}, 49.4 \mu \mathrm{~mol})$ was deprotected as for the racemic compound to give pure $4 \mathrm{a}(21.5 \mu \mathrm{~mol}, 44 \%)$ after ion-exchange chromatography; $[\alpha]_{\mathrm{D}}^{21}-42.7\left(c 0.19\right.$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH}$ 9.4). Mass spectra and NMR spectroscopic data were identical to those for 4ab.

Acknowledgements

We thank SERC (Molecular Recognition Initiative) for financial support, The Wellcome Trust for a Prize Studentship (D. L.), and Susan Alston for manuscript preparation. B. V. L. P. is a Lister Institute Fellow.

3 T. Furuchi, S. Yoshikawa, A. Miyawaki, A. Wada, N. Maeda and K. Mikoshiba, Nature (London), 1989, 342, 32.
4 G. A. Mignery, C. L. Newton, B. T. Archer and T. C. Südhof, J. Biol. Chem., 1990, 265, 12679.
5 C. D. Ferris, R. L. Huganir, S. Suppattapone and S. H. Snyder, Nature (London), 1989, 18, 83.
6 D. C. Billington, Chem. Soc. Rev., 1989, 18, 83.
7 B. V. L. Potter, Nat. Prod. Rep., 1990, 7, 1.
8 Inositol Phosphates and Derivatives. Synthesis Biochemistry and Therapeutic Potential, ACS Symposium Series, 463, ed. A. B. Reitz, American Chemical Society, 1991, pp. 1-235.
9 M. Hirata, F. Yanaga, T. Koga, T. Ogasawara, Y. Watanabe and S. Ozaki, J. Biol. Chem., 1990, 265, 8404.
10 M. Hirata, Y. Watanabe, T. Ishimatsu, T. Ikebe, Y. Kimura, K. Yamaguchi, S. Ozaki and T. Koga, J. Biol. Chem., 1989, 264, 20303.
11 M. J. Seewald, F. A. Aksoy, G. Powis, A. H. Fauq and A. P. Kozikowski, J. Chem. Soc., Chem. Commun., 1990, 1638.
12 S. T. Safrany, R. J. H. Wojcikiewicz, J. Strupish, S. R. Nahorski, D. Dubreuil and B. V. L. Potter, FEBS Lett., 1991, 278, 252.
13 J. R. Falck, A. Abdali and S. Wittenberger, J. Chem. Soc., Chem. Commun., 1990, 953.
14 S. R. Nahorski and B. V. L. Potter, Trends Pharmacol. Sci., 1989, 10, 139.
15 B. V. L. Potter in Inositol Phosphates and Derivatives. Synthesis Biochemistry and Therapeutic Potential, ACS Symposium Series, 463, ed. A. B. Reitz, American Chemical Society, 1991, pp. 186-201.
16 A. M. Cooke, R. Gigg and B. V. L. Potter, J. Chem. Soc., Chem. Commun., 1987, 1525.
17 A. M. Cooke, S. R. Nahorski and B. V. L. Potter, FEBS Lett., 1989, 242, 373.
18 A. M. Cooke, N. J. Noble, S. Payne, R. Gigg and B. V. L. Potter, J. Chem. Soc., Chem. Commun., 1989, 269.
19 M. Wakui, B. V. L. Potter and O. H. Petersen, Nature (London), 1989, 339, 317.
20 S. T. Safrany, R. J. H. Wojcikiewicz, J. Strupish, J. McBain, A. M. Cooke, B. V. L. Potter and S. R. Nahorski, Mol. Pharmacol., 1991, 39, 754.
21 C. E. Dreef, G. W. Mayr, J.-P. Jansza, H. C. P. F. Roelen, G. A. van der Marel and J. H. van Boom, Bioorg. Biomed. Chem. Lett., 1991, 1, 239.
22 V. Henne, G. W. Mayr, B. Grabowski, B. Koppitz and H. D. Söling, Eur. J. Biochem., 1988, 174, 95.
23 R. Schäfer, M. Nehls-Sahabandu, B. Grabowsky, M. DehlingerKremer, I. Schulz and G. W. Mayr, Biochem. J., 1990, 272, 817.
24 G. D. Prestwich, J. F. Maracek, R. J. Mourey, A. B. Theibert, C. G. Ferris, S. K. Danoff and S. H. Snyder, J. Am. Chem. Soc., 1991, 113, 1822.

25 A. N. Jina, J. Ralph and C. E. Ballou, Biochemistry, 1990, 29, 5203.
26 M. Hirata, Y. Watanabe, T. Ishimatsu, F. Yanaga, T. Koga and S. Ozaki, Biochem. Biophys. Res. Commun., 1990, 168, 379.
27 R. Cosstick, L. W. McLaughlin and F. Eckstein, Nucl. Acids. Res., 1984, 12, 1791.
28 D. Lampe and B. V. L. Potter, J. Chem. Soc., Chem. Commun., 1990, 1500.
29 J. Gigg, R. Gigg, S. Payne and R. Conant, J. Chem. Soc., Perkin Trans. 1, 1987, 1757.
30 P. A. Gent and R. Gigg, J. Chem. Soc., Chem. Commun., 1974, 277.
31 W. Bannwarth and A. Trzeciak, Helv. Chim. Acta, 1987, 70, 175.
32 R. Gigg and C. D. Warren, J. Chem. Soc. C, 1968, 1903.
33 J. Gigg and R. Gigg, J. Chem. Soc. C, 1966, 82.
34 S. David and S. Hanessian, Tetrahedron, 1985, 41, 643.
35 Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982, 885.

36 S. R. Nahorski, D. Lampe and B. V. L. Potter, unpublished work.
37 P. B. Gosh and M. W. Whitehouse, Biochem. J., 1968, 108, 155.
38 W. C. Still, M. Kahn, A. Mitra, J. Org. Chem., 1978, 43, 2923.
39 A. Briggs, J. Biol. Chem., 1922, 53, 13.
40 A. F. S. A. Habeeb, Methods Enzymol., 1972, 25, 457.
41 S. Ozaki, Y. Kondo, N. Shiotani, T. Ogasawara and Y. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1992, 729.

42 T. Desai, A. Fernandez-Mayoralas, J. Gigg, R. Gigg, C. Jaramillo, S. Payne, S. Penades and N. Schnetz in Inositol Phosphates and Derivatives. Synthesis, Biochemistry and Therapeutic Potential, ACS Symposium Series 463, ed. A. B. Reitz, American Chemical Society, 1991, pp. 86-102.

Received 8th June 1992
Accepted 5th August 1992

[^0]: * In this paper, where compounds have been optically resolved, a suffix $\mathbf{a b}$ refers to the racemic modification and suffixes of \mathbf{a} and \mathbf{b} denote D and L-enantiomers respectively.

